Hvor vigtigt er det, om man dividerer med n eller n-1 når spredningen udregnes?
I statistiklitteraturen gør man mange steder et stor nummer ud af, at det er vigtigt at dividere med \(n-1\) i stedet for \(n\), når man udregner stikprøvespredningen. Argumentet for dette er baseret på, at variansestimatet så bliver centralt, men dette resultat holder alligevel ikke for spredningsestimatet, og i virkeligheden burde man hellere bekymre sig om direkte at udregne et centralt estimat for spredningen.
Formlen for stikprøvespredningen for en stikprøve \(x_1,\dots,x_n\) fra en fordeling af uafhængige, identisk fordelte variable med middelværdi \(\mu\) og spredning \(\sigma\) er typisk givet som kvadratroden af variansen, \[ s = \sqrt{s^2}, \] hvor \(s^2\) er stikprøvevariansen, der estimeres ved \[ s^2 = \frac 1 {n-1} \sum_{i=1}^n (x_i - \bar x)^2, \] hvor \(\bar{x}\) er gennemsnittet \[ \bar x = \frac 1 n \sum_{i=1}^n x_i = \frac 1 n (x_1 + x_2 + \dots + x_n) \]
Både \(s^2\) og \(s\) måler, hvor meget observationerne er spredt ud omkring gennemsnittet. Man bruger oftest \(s\) i forbindelse med en konkret dataanalyse af følgende grunde: Hvis enheden af \(x_i\)’erne er f.eks. \(meter\) så er enheden af gennemsnittet også \(meter\), men enheden på \(s^2\) er \(meter^2\), og det er en sær størrelse at se på i relation til gennemsnittet. Spredningen derimod har også enheden \(meter\), hvilket gør spredningen meget lettere at forholde sig til, og det er også denne størrelse, der indgår i et udregningen af konfidensintervaller for en middelværdi. 95% konfidensintervallet for middelværdien har tilnærmelsesvist formen
\[ [\bar x - 1.96 \frac{s}{\sqrt{n}}; \bar x + 1.96 \frac{s}{\sqrt{n}}], \] hvor spredningen \(s\) indgår i udregningen, men ikke \(s^2\).
Hvorfor dividerer man med n-1 i stedet for med n?
Hvorfor bruger vi ikke bare
\[v^2 = \frac 1{n} \sum_{i=1}^n (x_i - \bar x)^2,\]
og dermed også
\[v = \sqrt{v^2}\]
som estimater for variansen og spredningen? Først og fremmest må der gælde, at hvis \(n\) er stor så er det ligegyldigt om man dividerer med \(n-1\) eller \(n\). Hvis \(n\) ikke er stor er svaret lidt anderledes. Det korte svar er, at dividerer man med \(n-1\) så bliver estimatet for stikprøvevariansen \(s^2\) centralt.1 Man har altså, at \(\mathbb{E}(s^2) = \sigma^2\). Beviset for at det gælder er ikke så kompliceret, og et eksempel kan ses her. Dividerer man i stedet med \(n\) så bliver estimatet for variansen i gennemsnit lidt for lavt; vi underestimerer variansen.
Men … i formlen for konfidensintervallet,
\[ [\bar x - 1.96 s/\sqrt{n}; \bar x + 1.96 s/\sqrt{n}] \]
indgår jo ikke \(s^2\), men \(s = \sqrt{s^2}\). I praksis bruger vi kun \(s\) i udregningerne, og \(s\) er ikke et centralt estimat for spredningen \(\sigma\).2 Dette resultat følger direkte af Jensens ulighed: Kvadratroden er en konkav funktion, og Jensens ulighed siger, at \(\sigma = \sqrt{\sigma^2} = \sqrt{\mathbb{E}(s^2)} \geq \mathbb{E}(\sqrt{s^2}) = \mathbb{E}(s)\). \(s\) underestimerer systematisk spredningen selvom \(s^2\) er et centralt estimat for variansen, og det betyder, at konfidensintervallerne i praksis er lidt for smalle. Baserer man intervallet på \(v\) i stedet for \(s\) så bliver intervallet endnu mere for snævert. Om den fejl man begår har nogen praktiske betydning må vurderes i den konkrete sammenhæng.
Vi kan illustrere problemstillingen ved hjælp af simulation. I figuren nedenfor udregnes det gennemsnitlige estimat \(s\) og \(v\) for en spredning når \(n\) varierer på baggrund af normalfordelte data.
Det ses, at både \(s\) og \(v\) underestimerer den sande spredning, og at \(v\) er værre end \(s\). \(s\) er altså stadig et bedre bud på spredningen end \(v\), men det er alligevel lidt utilfredsstillende at al den tid og energi, der i undervisningen går på at snakke om, hvor vigtigt det er at dividere med \(n-1\) i stedet for \(n\) faktisk ikke rigtig fikser det reelle problem.
Kan man gøre det bedre?
Er det overhovedet muligt at lave et centralt estimat for spredningen selv? Ja det er det faktisk - i hvert fald i det tilfælde, hvor data er uafhængige og følger en normalfordeling.3 Beviset følger af at vise, at variansestimatet følger en \(\sigma^2\chi^2\)-fordeling med \(n-1\) frihedsgrader. Hvis man dividerer det almindelige spredningsestimat \(s\) med faktoren
\[c(n) \approx 1 - \frac{1}{4n} - \frac{7}{32n^2} - \frac{19}{128n^3}\]
så vil \[s_c = \frac{s}{c(n)}\] være et centralt estimat for selve spredningen.4 De sidste par led i korrektionsfaktoren går meget hurtigt mod 0, så i de fleste tilfælde kan man nøjes med bare at bruge korrektionsfaktoren \(1 - \frac{1}{4n}.\)
Hertil kan man sige, at hvis man synes det er svært at overbevise sig selv eller andre om fornuften i at dividere med \(n-1\) fremfor \(n\), når man beregner \(s^2\) så bliver den pædagogiske øvelse bare endnu sværere, hvis man skal retfærdiggøre ovenstående korrektionsfaktor for et centralt estimat for spredningen. Det viser sig, at approksimationen
\[w = \sqrt{\frac 1 {n-1.5} \sum_{i=1}^n (x_i - \bar x)^2}\]
faktisk giver ret pæne resultater selv for små stikprøver. Dette fremgår af simulationerne i nedenstående figur.
Vi ser, at det korrigerede estimat for spredningen er spot on i forhold til den sande værdi, og det samme gør sig gældende for approksimationen \(w\). Det er illustrativt at beregne hvor stor korrektionen \((1-\frac 1 {4n})\) er for forskellige (små) værdier af \(n\):
n | c(n) |
---|---|
3 | 0.887 |
7 | 0.959 |
10 | 0.973 |
15 | 0.982 |
20 | 0.987 |